A fluorescence sensor for methionine oxidation

Kuldyushev, N., R. Schönherr, I. Coburger, M. Ahmed, R.A. Hussein, E. Wiesel, A. Godbole, T. Pfirrmann, T. Hoshi, S.H. Heinemann (2022) A GFP-based fluorescent sensor for methionine oxidation. Talanta 243, 123332. PMID: 35276500​

Fluorescent Sensor for Methionine Oxidation

Illustration: FSU Biophysik

Methionine oxidation is a reversible post-translational protein modification, affecting protein function, and implicated in aging and degenerative diseases. The detection of accumulating methionine oxidation in living cells or organisms, however, has not been achieved. Here we introduce a genetically encoded probe for methionine oxidation (GEPMO), based on the super-folder green fluorescent protein (sfGFP), as a specific, versatile, and integrating sensor for methionine oxidation. Placed at amino acid position 147 in an otherwise methionine-less sfGFP, the oxidation of this specific methionine to methionine sulfoxide results in a ratiometric fluorescence change when excited with ∼400 and ∼470 nm light. Future use of GEPMO in model organisms will open new perspectives for studies on the roles of oxidative modifications in aging and diseases.