Salicylic acid (SA)

Function of SA

SA overproducer is resistant against *Pseudomonas*

wild-type

SA overproducer

Two SA biosynthesis pathways

The IC Pathway The PAL Pathway plastids cytoplasm CM PAL Chorismic acid Prephenic acid L-Phenylalanine trans-Cinnamic (Phe) acid (t-CA) ortho-Courmaric acid Isochorismic acid Benzaldehyde (IC) IPL? BA2H? Benzoic acid (BA) Salicylic acid

Two SA biosynthetic pathways: the phenylalanine ammonia-lyase and the isochorismate pathway. AAO = aldehyde oxidase, BA2H = benzoic acid 2-hydroxylase; CM = chorismate mutase; ICS = isochorismate synthase; IPL = isochorismate pyruvate lyase.

SA signaling

SA from cytoplasma or plastids

Redox change

Monomerisation of NPR1 receptor

Monomer migrates to nucleus

After complex formation, activation of SA-responsive genes (*PR-1*)

SA induces defense against biotrophs

Crosstalk: hormone accumulation

Crosstalk: hormone signaling

SA and other infochemical mediate systemic resistance

The structure of salicylic acid (SA) and the long-distance systemic acquired resistance signals methyl salicylate (MeSA), azelaic acid (AzA), glycerol-3-phosphate (G3P), dehydroabietinal (DA), and pipecolic acid (Pip).

Systemic signaling

Traveling chemical compounds?

Seve elements and companion cells in phloem used Ca²⁺, ROS and electric waves

Target cells induces
SA- or JA-dependent
defense responses

Threat to roots \rightarrow [Ca²⁺]_{cyt} elevation in leaves

Ca²⁺ signal after 300 sec

low Ca²⁺ → high Ca²⁺

Positive control

Systemic signaling = Ca²⁺, ROS and electric waves